Tryptophan-derived Catabolites Are Responsible for Inhibition of T and Natural Killer Cell Proliferation Induced by Indoleamine 2,3-Dioxygenase

نویسندگان

  • Guido Frumento
  • Rita Rotondo
  • Michela Tonetti
  • Gianluca Damonte
  • Umberto Benatti
  • Giovanni Battista Ferrara
چکیده

Macrophages exposed to macrophage colony-stimulating factor acquire the capacity to suppress T cell proliferation; this effect is associated with de novo expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO). We have purified IDO and tested its activity in in vitro models of T cell activation. IDO was able to inhibit proliferation of CD4(+) T lymphocytes, CD8(+) T lymphocytes, and natural killer (NK) cells; proliferation of B lymphocytes was not affected. The inhibitory role of tryptophan and of its catabolites was then tested. In the presence of tryptophan, only L-kynurenine and picolinic acid inhibit cell proliferation. In a tryptophan-free medium cell proliferation was not affected. In the absence of tryptophan inhibition induced by L-kynurenine and picolinic acid was observed at concentrations below the lowest concentration that was effective in the presence of tryptophan, and quinolinic acid acquired some inhibitory capacity. Inhibition of cell proliferation induced by the tryptophan catabolites resulting from IDO activity was selective, applying only to cells undergoing activation. Resting cells were not affected and could subsequently activate normally. We suggest that IDO exerts its effect on cell proliferation by (i) starting the cascade of biochemical reactions that produce the three catabolites and by (ii) enhancing their inhibitory potential by depriving the extracellular microenvironment of tryptophan.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Allogeneic T Cell Proliferation by Indoleamine 2,3-Dioxygenase–expressing Dendritic Cells

Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed in certain cells and tissues, particularly in antigen-presenting cells of lymphoid organs and in the placenta. It was shown that IDO prevents rejection of the fetus during pregnancy, probably by inhibiting alloreactive T cells, and it was suggested that IDO-expression in antigen-presenting cells ...

متن کامل

Indoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy

Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...

متن کامل

The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function.

Tryptophan (Trp) catabolism mediated by indoleamine 2,3-dioxygenase (IDO) plays a central role in the regulation of T-cell-mediated immune responses. In this study, we also demonstrate that natural killer (NK)-cell function can be influenced by IDO. Indeed, l-kynurenine, a Trp-derived catabolite resulting from IDO activity, was found to prevent the cytokine-mediated up-regulation of the express...

متن کامل

Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells.

BACKGROUND The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased im...

متن کامل

Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation.

Dendritic cells (DCs) play a key role in the activation and regulation of B and T lymphocytes. Production of indoleamine 2, 3-dioxygenase (IDO) by macrophages has recently been described to result in inhibition of T cell proliferation through tryptophan degradation. Since DCs can be derived from monocytes, we sought to determine whether DCs could produce IDO which could potentially regulate T c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 196  شماره 

صفحات  -

تاریخ انتشار 2002